321章 自己挖的坑,含泪也要填上
“奇,你的黎曼zeta函数素数分布理论体系绝对正确。”几位大佬很肯定的说到。
其中法尔廷斯、林登施特劳斯百分之两百的肯定,这两位菲奖得主曾是沈奇黎曼猜想团队的技术顾问,特别是法尔廷斯,ζ(s)第二个表达式一半的工作量由他完成。
法尔廷斯说到:“全面彻底的消化一个新的理论体系,需要很长一段时间。你知道吗,奇,柯朗研究所有个二十人的团队,他们专门研究黎曼zeta函数素数分布理论体系,他们的研究工作或许还将持续好几年。”
“说的也是。”沈奇和几位大佬喝个咖啡,聊个天,心情舒畅了不少。
沈奇忽然想到一个疑点:“查尔斯,格雷德,埃隆,不知你们注意到没有,最近宣称证明了哥德巴赫猜想的人,几乎都是名气不大的学者,甚至还有卡车司机、中学数学老师等社会上的数学爱好者。我有些疑惑,那些此时Γ(x)无意义。
引理6:在通常复数的加法、乘法运算下,有理数集Q是一个域。
引理7:在通常复数的加法、乘法运算下,Q上的全体代数是一个域。
根据引理7,沈奇顺手花了10分钟时间证明了引理8。
引理8:如果a是代数数,θ是超越数,那么a与θ的积aθ必然是超越数。
八个引理的铺垫做完,框架搭好了,沈奇水到渠成写出了哥猜第五证法的核心内容。
这个核心是一个函数构造方程:cos(1+Γ(x)/x+1+Γ(2n-x)/2n-x)π+isin(ρx+b)π=-1
哥猜1+1的问题,经过沈奇自然而然的巧妙处理,最终转化为对上述函数构造方程的求解。
严格求解验证了这个函数构造方程,等价于解决了哥猜1+1问题。
为此沈奇花费了整整三天的时间,他闭门不出,暂时忘记了物理学进度、欧洲重要活动和两个研究生的动向。
但每天给欧叶打个电话不能忘。
三天后沈奇完稿,全新的哥猜第五证法没有问题,函数构造方程有解,哥猜1+1问题被他顺手解决。