258章 方程
欧叶的父母在纽约逗留了一周后,准备回国。
临走之前,老欧单独找沈奇谈话。
老欧说到:“其实我是坚决反对欧叶来美国的,但她执意要来,我只能顺着她。”
你反对无效呀老欧同志,你们家你夫人说了算。抓住了主要矛盾的沈奇,他现在不怕老欧了,老欧就是个清小怪的,叶夫人才是核心人物。
惹毛了老欧,到,“但我还是得先回普大了,我没什么可耽误的,我怕的是耽误你的学业。毕竟你初来乍到,学业繁重,需静心一段时间才能找到学术状态。”
欧叶点点头:“嗯,我会努力的。”
“那我走了,一个月之内我不会再来哥大,一个月之后我来看你。”沈奇跟欧叶吻别,遂驾车返回普林斯顿。
普林斯顿到哥伦比亚大学一个多小时的车程,不远不近吧,有车的话还算方便。
沈奇确实没什么可耽误的,他在圣诞之前已经搞定了普大博士毕业的一切准备素材,他现在就是等着博士毕业答辩了。
虽然没有硬性的要求,沈奇还是想做点有意义的事情,他开始起草《数论史》,这是他的兴趣爱好,不是获取PhD的必要条件。
数论研究的是纯数,因为她纯净高贵的出身,被誉为“数学女王”。
数论可以分为两个主要分支,其一是研究方程式的解,即丢番图方程,这个分支的历史可追溯到大约两千年前,创始人是希腊大数学家丢番图。
费马、安德鲁-怀尔斯、法尔廷斯等大师都曾在这个领域做出贡献,著名的丢番图方程包括费马大定理、卡塔兰定理、BSD,其中前面两个已被证明,BSD难到变态,是七个千禧难题之一。
由沈奇完成证明的沃什猜想也属于丢番图系列方程,沃什猜想已在一年前更名为沃什定理,可被直接引用。
数论的另一个分支是解析数论,由高斯、黎曼、欧拉、狄利克雷、外尔等大师联手创立。
解析数论中的著名案例包括高斯三角和定理、欧拉五角数定理、狄利克雷的两个素数问题证明、外尔指数和公式、哥德巴赫猜想、黎曼猜想等等。
绝大多数著名的解析数论问题已被解决,仅剩哥德巴赫猜想和黎曼猜想有待攻克。
沈奇尝试从数论发展史的角度,更深刻的理解丢番图方程和解析数论。
强行进攻攻到吐,不如从历史上的数学大师们身上找点灵感吧。